REDZULU2003
Well-known member
Red and Infrared Light Therapy Speeds Muscle Recovery and Prevents Muscle Soreness
Scientific Sources and Medical References:
[1] Avni D, Levkovitz S, Maltz L, Oron U. Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg. 2005;23:273–277.
[2] Rizzi CF, Mauriz JL, Freitas Correa DS, et al. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med. 2006;38:704–713.
[3] Tullberg M, Alstergren PJ, Ernberg MM. Effects of low-power laser exposure on masseter muscle pain and microcirculation. Pain. 2003;105:89–96.
[4] Douris P, Southard V, et al. Effect of phototherapy on delayed onset muscle soreness. Photomedicine and Laser Surgery. 2006 Jun;24(3):377-82.
[5] Antonialli FC, De Marchi T, Tomazoni SS, et al. Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers in Medical Science. 2014 Nov;29(6):1967-76.
[6] Leal Junior EC, Lopes-Martins RA, Dalan F, et al. Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg. 2008 Oct;26(5):419-24.
[7] Borges LS, et al. Light-emitting diode phototherapy improves muscle recovery after a damaging exercise. Lasers in Medical Science. 2014 May;29(3):1139-44.
[8] Paolillo FR, Corazza AV, et al. Phototherapy during treadmill training improves quadriceps performance in postmenopausal women. Climacteric. 2014 Jun;17(3):285-93.
[9] Paolillo FR, Milan JC, Aniceto IV, et al. Effects of infrared-LED illumination applied during high-intensity treadmill training in postmenopausal women. Photomedicine in Laser Surg. 2011 Sep;29(9):639-45.
[10] De Marchi T, Leal Junior EC, et al. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers in Medical Science. 2012 Jan;27(1):231-6.
[11] Rossato M, et al. Time Response of Photobiomodulation Therapy on Muscular Fatigue in Humans. Journal of Strength and Conditioning Research. 2018 Nov;32(11):3285-3293.
[12] Baroni BM, et al. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol. 2010 Nov;110(4):789-96.
[13] Bjordal JM, Lopes-Martins RA, Iversen VV. A randomised, placebo controlled trial of low level laser therapy for activated achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med. 2006;40:76–80.
[14] Aimbire F, Albertini R, Pacheco MT, et al. Low-level laser therapy induces dose-dependent reduction of TNF alpha levels in acute inflammation. Photomed Laser Surg. 2006;24:33–37.
[15] Hemvani N, Chitnis DS, George M, Chammania S. In vitro effect of nitrogen and He-Ne laser on the apoptosis of human polymorphonuclear cells from burn cases and healthy volunteers. Photomed Laser Surg. 2005;23:476–479.
[16] University of Rochester Medical Center. Health Encyclopedia, Creatine Kinase.
[17] Machado AF, et al. Phototherapy on Management of Creatine Kinase Activity in General Versus Localized Exercise: A Systematic Review and Meta-Analysis. Clinical Journal of Sports Medicine. 2018 Jun 21
[18] Leal-Junior EC, Vanin AA, Miranda EF, et al. Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers in Medical Science. 2015 Feb;30(2):925-39.
[19] Leal Junior EC, Lopes-Martins RA, Rossi RP, et al. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers in Surgical Medicine. 2009 Oct;41(8):572-7.
[20] Pinto HD, Vanin AA, et al. Photobiomodulation Therapy Improves Performance and Accelerates Recovery of High-Level Rugby Players in Field Test: A Randomized, Crossover, Double-Blind, Placebo-Controlled Clinical Study. Journal of Strength and Conditioning Research. 2016 Dec;30(12):3329-3338.
[21] De Marchi T, Leal-Junior ECP, et al. Photobiomodulation therapy before futsal matches improves the staying time of athletes in the court and accelerates post-exercise recovery. Lasers in Medical Science. 2018 Sep 27
[22] Paolillo FR, Corazza AV, et al. Infrared LED irradiation applied during high-intensity treadmill training improves maximal exercise tolerance in postmenopausal women: a 6-month longitudinal study. Lasers in Medical Science. 2013 Feb;28(2):415-22.
[23] de Paiva PR, Tomazoni SS, et al. Photobiomodulation therapy (PBMT) and/or cryotherapy in skeletal muscle restitution, what is better? A randomized, double-blinded, placebo-controlled clinical trial. Lasers in Medical Science. 2016 Dec;31(9):1925-1933.
[24] X. H. Li. Laser in rhe Department of Traumatology. Laser Therapy. 1990; Vol. 2 Issue 3, pp. 119-122.
Scientific Sources and Medical References:
[1] Avni D, Levkovitz S, Maltz L, Oron U. Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg. 2005;23:273–277.
[2] Rizzi CF, Mauriz JL, Freitas Correa DS, et al. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med. 2006;38:704–713.
[3] Tullberg M, Alstergren PJ, Ernberg MM. Effects of low-power laser exposure on masseter muscle pain and microcirculation. Pain. 2003;105:89–96.
[4] Douris P, Southard V, et al. Effect of phototherapy on delayed onset muscle soreness. Photomedicine and Laser Surgery. 2006 Jun;24(3):377-82.
[5] Antonialli FC, De Marchi T, Tomazoni SS, et al. Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers in Medical Science. 2014 Nov;29(6):1967-76.
[6] Leal Junior EC, Lopes-Martins RA, Dalan F, et al. Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg. 2008 Oct;26(5):419-24.
[7] Borges LS, et al. Light-emitting diode phototherapy improves muscle recovery after a damaging exercise. Lasers in Medical Science. 2014 May;29(3):1139-44.
[8] Paolillo FR, Corazza AV, et al. Phototherapy during treadmill training improves quadriceps performance in postmenopausal women. Climacteric. 2014 Jun;17(3):285-93.
[9] Paolillo FR, Milan JC, Aniceto IV, et al. Effects of infrared-LED illumination applied during high-intensity treadmill training in postmenopausal women. Photomedicine in Laser Surg. 2011 Sep;29(9):639-45.
[10] De Marchi T, Leal Junior EC, et al. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers in Medical Science. 2012 Jan;27(1):231-6.
[11] Rossato M, et al. Time Response of Photobiomodulation Therapy on Muscular Fatigue in Humans. Journal of Strength and Conditioning Research. 2018 Nov;32(11):3285-3293.
[12] Baroni BM, et al. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol. 2010 Nov;110(4):789-96.
[13] Bjordal JM, Lopes-Martins RA, Iversen VV. A randomised, placebo controlled trial of low level laser therapy for activated achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med. 2006;40:76–80.
[14] Aimbire F, Albertini R, Pacheco MT, et al. Low-level laser therapy induces dose-dependent reduction of TNF alpha levels in acute inflammation. Photomed Laser Surg. 2006;24:33–37.
[15] Hemvani N, Chitnis DS, George M, Chammania S. In vitro effect of nitrogen and He-Ne laser on the apoptosis of human polymorphonuclear cells from burn cases and healthy volunteers. Photomed Laser Surg. 2005;23:476–479.
[16] University of Rochester Medical Center. Health Encyclopedia, Creatine Kinase.
[17] Machado AF, et al. Phototherapy on Management of Creatine Kinase Activity in General Versus Localized Exercise: A Systematic Review and Meta-Analysis. Clinical Journal of Sports Medicine. 2018 Jun 21
[18] Leal-Junior EC, Vanin AA, Miranda EF, et al. Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers in Medical Science. 2015 Feb;30(2):925-39.
[19] Leal Junior EC, Lopes-Martins RA, Rossi RP, et al. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers in Surgical Medicine. 2009 Oct;41(8):572-7.
[20] Pinto HD, Vanin AA, et al. Photobiomodulation Therapy Improves Performance and Accelerates Recovery of High-Level Rugby Players in Field Test: A Randomized, Crossover, Double-Blind, Placebo-Controlled Clinical Study. Journal of Strength and Conditioning Research. 2016 Dec;30(12):3329-3338.
[21] De Marchi T, Leal-Junior ECP, et al. Photobiomodulation therapy before futsal matches improves the staying time of athletes in the court and accelerates post-exercise recovery. Lasers in Medical Science. 2018 Sep 27
[22] Paolillo FR, Corazza AV, et al. Infrared LED irradiation applied during high-intensity treadmill training improves maximal exercise tolerance in postmenopausal women: a 6-month longitudinal study. Lasers in Medical Science. 2013 Feb;28(2):415-22.
[23] de Paiva PR, Tomazoni SS, et al. Photobiomodulation therapy (PBMT) and/or cryotherapy in skeletal muscle restitution, what is better? A randomized, double-blinded, placebo-controlled clinical trial. Lasers in Medical Science. 2016 Dec;31(9):1925-1933.
[24] X. H. Li. Laser in rhe Department of Traumatology. Laser Therapy. 1990; Vol. 2 Issue 3, pp. 119-122.